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Abstract. Recently the series for two renormalization group functions (corresponding to the
anomalous dimensions of the fieldsφ andφ2) of the three-dimensionalφ4 field theory have been
extended to next order (seven loops) by Murray and Nickel. We examine the influence of these
additional terms on the estimates of critical exponents of theN -vector model, using some new
ideas in the context of the Borel summation techniques. The estimates have slightly changed,
but remain within the errors of the previous evaluation. Exponents such asη (related to the
field anomalous dimension), which were poorly determined in the previous evaluation of Le
Guillou–Zinn-Justin, have seen their apparent errors significantly decrease. More importantly,
perhaps, summation errors are better determined.

The change in exponents affects the recently determined ratios of amplitudes and we report
the corresponding new values.

Finally, because an error has been discovered in the last order of the publishedε = 4− d
expansions (orderε5), we have also re-analysed the determination of exponents from theε-
expansion.

The conclusion is that the general agreement betweenε-expansion and three-dimensional
series has improved with respect to Le Guillou–Zinn-Justin.

1. Introduction and summary of results

Recently the perturbative expansions of the anomalous dimensions of the fieldsφ andφ2

for the O(N) symmetric(φ2)2d=3 field theory have been extended to next order (seven loops)
in the caseN = 0, . . . ,3 by Murray and Nickel [46]. This rather impressive result has
led us to re-examine the determinations of the critical exponents forN = 0 (polymers),
N = 1 (Ising-like systems),N = 2 (superfluid helium) andN = 3 (real ferromagnets). For
completeness we have added results (at six loops) forN = 4 which correspond to the Higgs
sector of the standard model at finite temperature. A limitation of this work is that the
series for the renormalization group (RG)β-functions have not been extended (they remain
at six loops) and for several exponents this is now the main source of error.

Critical exponents have also been calculated in the form ofε = 4 − d expansions,
up to five loops [11]. Recently, a slight error in the previously published series has been
corrected [12], and this has motivated us to also re-examine the corresponding estimates
(again addingN = 4 results).

For the reader who is not interested in details we summarize our main results for
N = 0, . . . ,3 in table 1 (d = 3) and in table 2 (ε-expansion) whileN = 4 results for
both methods can be found in table 3. We have chosen central values which satisfy all
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Table 1. Critical exponents of the O(N) models fromd = 3 expansion (present work).

N 0 1 2 3

g̃∗Ni 1.413± 0.006 1.411± 0.004 1.403± 0.003 1.390± 0.004
g∗ 26.63± 0.11 23.64± 0.07 21.16± 0.05 19.06± 0.05
γ 1.1596± 0.0020 1.2396± 0.0013 1.3169± 0.0020 1.3895± 0.0050
ν 0.5882± 0.0011 0.6304± 0.0013 0.6703± 0.0015 0.7073± 0.0035
η 0.0284± 0.0025 0.0335± 0.0025 0.0354± 0.0025 0.0355± 0.0025
β 0.3024± 0.0008 0.3258± 0.0014 0.3470± 0.0016 0.3662± 0.0025
α 0.235± 0.003 0.109± 0.004 −0.011± 0.004 −0.122± 0.010
ω 0.812± 0.016 0.799± 0.011 0.789± 0.011 0.782± 0.0013
θ = ων 0.478± 0.010 0.504± 0.008 0.529± 0.009 0.553± 0.012

Table 2. Critical exponents of the O(N) models fromε-expansion (present work).

N 0 1 2 3

γ (free) 1.1575± 0.0060 1.2355± 0.0050 1.3110± 0.0070 1.3820± 0.0090
γ (bc) 1.1571± 0.0030 1.2380± 0.0050 1.317 1.392
ν (free) 0.5875± 0.0025 0.6290± 0.0025 0.6680± 0.0035 0.7045± 0.0055
ν (bc) 0.5878± 0.0011 0.6305± 0.0025 0.671 0.708
η (free) 0.0300± 0.0050 0.0360± 0.0050 0.0380± 0.0050 0.0375± 0.0045
η (bc) 0.0315± 0.0035 0.0365± 0.0050 0.0370 0.0355
β (free) 0.3025± 0.0025 0.3257± 0.0025
β (bc) 0.3032± 0.0014 0.3265± 0.0015

0.3465± 0.0035 0.3655± 0.0035

ω 0.828± 0.023 0.814± 0.018 0.802± 0.018 0.794± 0.018
θ 0.486± 0.016 0.512± 0.013 0.536± 0.015 0.559± 0.017

Table 3. Critical exponents in the O(4) models fromd = 3 andε-expansion (present work).

d = 3 ε : free, bc

g̃∗Ni 1.377± 0.005
g∗ 17.30± 0.06
γ 1.456± 0.010 1.448± 0.015, 1.460
ν 0.741± 0.006 0.737± 0.008, 0.742
η 0.0350± 0.0045 0.036± 0.004, 0.033
β 0.3830± 0.0045 0.3820± 0.0025
α −0.223± 0.018 −0.211± 0.024
ω 0.774± 0.020 0.795± 0.030
θ 0.574± 0.020 0.586± 0.028

scaling relations, but the apparent errors forγ, ν, β, η in general have been determined
independently. For thed = 3 IR fixed-point valueg∗ we give results both in the usual field
theory normalization (equations (2.3)) and in the normalization used by Nickel [7],

g̃ = N + 8

48π
g

which is such that the fixed-point value is close to 1.
Note that in table 1, in addition to the plainε-expansion results (denoted as ‘free’),

we report some additional results denoted as ‘bc’ (i.e. with a boundary condition) that
try to incorporate the knowledge of the exactd = 2 values by summing the series
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(f (ε) − f (2))/(2− ε), wheref (ε) is an exponent with a known two-dimensional (2D)
value. In the case of the exponentν for N = 0 thed = 1 value is also known. We have
checked that incorporating this additional piece of information has no significant impact on
the final result.

For N > 2 the analysis of the series with boundary conditions is quite difficult.
Therefore we present here only central values, and no error estimates. Values and errors of
the corresponding free estimates give some indication.

Let us finally emphasize that we have no real knowledge about the analytic properties
of exponents whend approaches 2. Therefore the bc values could be affected by systematic
effects.

This paper is organized as follows. In section 2 we summarize a few ideas about
perturbative expansion at fixedd = 3 dimension andε-expansion. In section 3 we briefly
recall the Borel summation method based on a conformal mapping of the complex cut plane.
Several new variations of the practical implementation of the general method are explained.
In section 4 we recall the idea of the pseudo-epsilon expansion and introduce the exponents’
correlation analysis, which consists of eliminating the coupling constant between different
exponents. Section 5 contains a discussion of the numerical results. Finally, the new values
of exponents slightly affect the recently published results [13] for the equation of state of
the three-dimensional (3D) Ising model, and we present the new determination in section 6
(as well as a revised version ofε-expansion predictions).

2. Renormalizedφ4 field theory: ε-expansion and 3D perturbation series

In this paper the general framework is the(φ2)2, O(N) symmetric, quantum field theory
whose bare action is:

H(φ) =
∫
{ 12[∂µφ(x)]

2+ 1
2λ2φ

2(x)+ 1
4!λ4[φ2(x)]2} ddx. (2.1)

We recall that near the critical temperatureTc, λ2 is a linear measure of the temperature.
If we denote byλ2c the value for which the theory becomes massless (T = Tc) then the
parametert

t = λ2− λ2c ∝ T − Tc (2.2)

characterizes the deviation from the critical temperature.
The (φ2)2 field theory is renormalizable in four dimensions, and to eliminate UV

divergences (ford < 4 the theory is super-renormalizable) one introduces renormalized
correlation functions. This involves choosing a renormalization scheme and then trading
the bare parametersλ2, λ4 for a (scheme-dependent) renormalized massm and dimensionless
coupling g. The mass parameterm is proportional to the physical mass, or inverse
correlation length, of the high-temperature phase. It behaves fort ∝ T − Tc → 0+ as
m ∝ tν , whereν is the correlation length exponent (see [3] for details).

RG arguments state that the long-distance properties of the massless (critical) theory are
governed by non-trivial IR fixed pointsg∗, solution of the equation

β(g∗) = 0 with β ′(g∗) = ω > 0.

The anomalous dimensionsη(g) andη2(g), of the renormalized fieldφr = φ/
√
Z and

of the renormalized composite operator [φ2]r = (Z2/Z)φ
2 respectively, evaluated atg = g∗

then yield the two independent combinations of critical exponents (e.g.η = η(g∗)). The
explicit forms of the RG functionsβ(g), η(g), η2(g) depend on the specific renormalization
scheme.
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The space dimension relevant for statistical physics isd = 3 (occasionallyd = 2). In
this case one faces a serious problem: ordinary perturbative expansion ing in the massless
theory is IR divergent for any fixed dimensiond, d < 4. A solution to this problem was
first provided by Wilson–Fisher’sε = 4−d expansion. The idea is to avoid IR problems by
expanding inε = 4− d as well as in the coupling constantg. IR singularities are then only
logarithmic and can be dealt with. The expansion to the highest order presently available
have been performed within the minimal subtractionMS scheme, [11, 12]. In this scheme
the d-dimensional RGβ-function takes the exact form

β(MS)(gMS, ε) = −εgMS+ f (gMS) = −εgMS+O(g2
MS
).

The fixed-point equation

β(MS)(g
∗
MS
, ε) = 0

can be solved in the form of anε-expansion. TheL-loop expansion of theβ-function
then yieldsg∗

MS
up to orderεL. By replacinggMS by g∗

MS
in the perturbative expansion of

the anomalous dimensionsη, η2 one finally obtains theε-expansion of critical exponents.
Note that whileg∗ is scheme dependent, theε-expansion for universal quantities is scheme
independent.

While this method directly yields a formal expansion for exponents a practical problem
arises when one wishes to determine exponents for a physical value ofε like ε = 1 (d = 3).
Indeed theε-expansion is divergent as first empirically noted in [5] and later confirmed
by the large-order behaviour analysis. A summation method is therefore required to obtain
accurate results.

Following Parisi’s suggestion [6] perturbation series have also been calculated directly
in three dimensions in the framework of the massive renormalized theory where correlation
functions0(n)r of the renormalized fieldφr are fixed by the normalization conditions

0(2)r (p;m, g) = m2+ p2+O(p4) (2.3a)

0(4)r (pi = 0;m, g) = mg. (2.3b)

One may be surprised by the introduction of coupling and field renormalizations in a super-
renormalizable theory. The reasons are simple, the bare coupling constant becomes infinite
when the physical mass goes to zero. Simultaneously the field renormalization also diverges
(see [3, 4]).

Series up to six loops obtained in this scheme in [7] forN = 0, . . . ,3 have been
generalized in [36] to anyN . Recently, in [46] the results forη andη2 (but not forβ(g))
have been extended to seven loops forN = 0, . . . ,3 (see the appendix). One problem
here is that the valueg∗ of the fixed-point coupling is affected by summation errors on
the β-function. Errors ong∗ then induce systematic errors for all critical exponents (see
section 3).

3. Series summation

Perturbative quantum field theory generates divergent series. Summing such series by simply
adding successive terms is meaningful provided coupling constants remain small enough (as
in quantum electro-dynamics (QED)). Here, however, the expansion parameter, the fixed-
point valueg∗, is a number of order 1: one therefore faces the problem of evaluating the
sum of divergent series in a non-trivial regime.

In this paper the Borel–Leroy transformation has been used, followed by a conformal
mapping [33] (a new version of the method developed in [8] for critical exponents) to
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sum the series. We recall that the Borel summability of theφ4 theory in two and three
dimensions has been established in [32].

Let S(z) be any (Borel summable) function whose series has to be summed. We
transform the series:

S(z) =
∑
k=0

Skzk (3.1)

into

S(z) =
∑
k=0

Bk(b)

∫ ∞
0
tbe−t uk(zt) dt (3.2)

with

u(s) =
√

1+ as − 1√
1+ as + 1

. (3.3)

The coefficientsBk are calculated by expanding in powers ofz the r.h.s. of equation 3.2
and identifying with expansion 3.1. The constanta has been determined by the large-order
behaviour analysis. The explicit values are

a = 0.147 774 232× 9

N + 8
(3.4)

for the perturbative expansion ind = 3 dimensions and

a = 3

N + 8
(3.5)

for the ε = 4− d expansion. We map the Borel plane, cut at the instanton singularity
s = −1/a, onto a circle in theu-plane in such a way to enforce maximal analyticity and
thus to optimize the rate of convergence (for details see, e.g. [3]).

3.1. Additional technical details

Following an idea introduced in [8] for the summation of theε-expansion we have in
addition made a homographic transformation on the coupling constantz to displace possible
singularities in the complexz-plane:

z = z′/(1+ qz′). (3.6)

We have looked for values of the parametersq andb for which the results were particularly
insensitive to the orderk: in practice the absolute differences of results corresponding to
three successive orders have been minimized. When several solutions were found the least
sensitive solution was chosen. Moreover, the value ofb had to stay within a reasonable
range around the value predicted by the large-order behaviour.

For each seriesS(z) we have applied the summation procedure both toS and 1/S.
Finally, we have introduced ‘shifts’, for each series summing

Ss(z) =
(
S(z)−

s−1∑
k=0

Skzk
)
/zs.

In practice only the casess = 0 (no subtractions) ands = 1, 2 have proven useful. Thus, for
each exponent we have obtained six results whose spread gives an indication of summation
errors.
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Figure 1. Values ofg∗, N = 0, as a function of the parameterr for shifts 0, 1, 2.

In some examples (in particularg∗) shifts have produced strongly oscillating results. It
has appeared that it would be useful to somehow interpolate between shifted series. An
idea, new to this work, has been to consider the combination

S ′ ≡ (1+ rg)S (3.7)

wherer has been used as a third variational parameter (dividing of course the final result by
the factor(1+rg)). The precise value ofr has been obtained by minimizing the dependence
in b. This new additional parameter has proven quite useful: it has allowed us, as expected,
to obtain series with better apparent convergence as well as better general consistency. It
has also revealed that in a few cases the apparent convergence atr = 0 was deceptive,
the results being unstable with respect to a variation ofr. These cases have already been
singled out by the extreme values of the optimalb, q parameters.

The main consequence of this new approach has been a decrease in the values ofg∗

although the length of the series has not changed (better agreement between different shifts
at non-zeror, see figure 1), and ofγ for N = 0 andd = 3 (bestr = 0 values of the
exponent revealed to be unstable).

3.2. Errors

The summation error for any quantityS(z) has been estimated by looking at differences
between successive orders, sensitivity to the parameters and spread between all results
concerning the same exponent (this has also involved checking scaling relations).

In the case of the 3D perturbative expansion, the total error for each exponentS is the
sum of the intrinsic summation error at fixedg̃∗, 1S, and the error induced by the error in
g̃∗, 1g̃∗:

S = S∗ ±1S ±
(

dS
dg̃

)
g̃∗
1g̃∗. (3.8)

We thus also give the derivatives of exponents with respect tog̃∗. Two derivatives are
displayed in table 4, all of the others can be deduced from scaling relations. The reader can
thus infer the sensitivity of exponents to a change in the values and errors ofg∗.

Let us stress here that in our tables we quote the total combined error (as in [1, 2]) while
only the intrinsic summation error is reported in table 10 for the alternative result of [46].
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Table 4. Critical exponents: sensitivity tõg∗ determination.

N 0 1 2 3 4

dγ /dg̃∗ 0.10 0.18 0.28 0.39 0.50
dν/dg̃∗ 0.069 0.11 0.17 0.22 0.29

In view of theε-expansion, the total error is directly given by the intrinsic summation
error of each exponent and the situation is in principle more favourable: the only problem
then is that the available series are shorter (they are technically more difficult to obtain) and
the summation error is then bigger!

3.3. Remarks.

The comparison between results coming from directd = 3 series andε-expansion is not only
useful to test the accuracy of our numerical methods. Their consistency is also important
to test various assumptions or properties.

In the case of thed = 3 expansion we assume more analyticity in the Borel plane as
has been rigorously proven. Semiclassical instanton analysis indicates that our assumption
is quite plausible but this is not a proof. Moreover, several authors (see e.g. [15, 70])
have argued that RG functions are not regular atg = g∗. We have of course checked that
these singularities, if they exist, are weak. Numerical evidence is that all RG functions are
at least differentiable atg = g∗ (including β ′(g) which yieldsω). We cannot of course
exclude the situation where these singularities are so weak as to escape detection, but strong
enough to influence results at the level of accuracy at which exponents are determined. Our
apparent errors could then be underestimated. Nevertheless it should be emphasized that
if the hypothesis of analyticity in the cut Borel plane holds, the Borel summation should
nevertheless converge asymptotically even in the presence of confluent singularities.

In view of the ε-expansion, problems are more serious, since Borel summability has
not even be proven. Moreover, there are indications that UV-renormalon singularities could
prevent Borel summability, [66]. These singularities are related to the large-momentum
behaviour of renormalized perturbation theory (the ‘Landau ghost’ problem). A plausible
conjecture is that quantities related to the massless theory are renormalon-free since they can
be calculated in the theory with UV cut-off. This particularly applies to critical exponents.
Instead the question remains open for quantities only defined in the massive renormalized
theory, such as the fixed-point coupling constantg∗(ε) defined by (2.3). Note that because
the ε series are rather short, empirical evidence is weak.

4. Pseudo-epsilon expansion and exponents’ correlation analysis

In [2], a method was introduced to try to circumvent the problem of systematic errors
induced by an error in the determination ofg∗: the so-called pseudo-epsilon expansion.
The idea is to mimic theε-expansion and introduce a new parameterε̃ in terms of which
g̃∗ is expanded as well as all critical exponents.

The d = 3 β-function in the scheme given by equations (2.3) have the form:

β(g) = −g + β2(g)

whereβ2 begins at orderg2 with a positive coefficient of order 1. We then replace the
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Table 5. Critical exponents: correlation between exponents at the fixed point.

N 0 1 2 3 4

dη/dν (d = 3) 0 .83 0.59 0.43 0.32 0.27

β-function by a new functionβ(g, ε̃)

β(g, ε̃) = −ε̃g + β2(g)

and expandg∗(ε̃), the solution toβ(g, ε̃) = 0, in powers ofε̃. Eventually we have to sum
the series for the value of̃ε = 1 to recover the initial equation.

This method has been systematically used in [2], and this explains why some of the
new values of exponents we obtain in this work differ less from the previous values of [2]
than the change ing∗ would lead to expect.

To apply the same method here, we face the problem that the series for theβ-function
have not been extended to seven loops, and therefore for the exponentsγ or ν, for example,
the information of the additional seven loops term cannot be used. However, sinceη(g)

starts only at orderg2, to determineη at loop orderL, g∗(ε̃) is required only at loop order
L−1. This also applies to the exponentδ which only depends onη, and to which we have
equally applied the summation procedures.

It follows that forN = 0, 1, 2, 3 the pseudo-epsilon expansion yields genuine seven-loop
information onη, δ, with apparent errors much smaller compared with six-loop results.

In this work to try to circumvent the problem of shorterβ(g) series andg∗ determination,
we have introduced another idea. We have directly eliminated the coupling constant between
a pair of independent exponents. For example we have inverted the relationg 7→ 2− 1/ν

g(ν) =
∑

gk(2− 1/ν)k

and then expressed other exponents as series in 2− 1/ν. In this way we have obtained
correlation curves between exponents, which can all eventually be translated into relations
η(ν). We have applied the same idea starting from the exponentsγ, β, expanding in powers
of 1− 1/γ and 4− 1/β.

With this in mind it is interesting to consider the derivatives dη/dν at the fixed point,
which we thus display in table 5. Other derivatives can be deduced, using scaling relations.
The correlation line can be fixed by taking a point from the list of table 1.

Finally, let us note that we can advance this idea to expanding the RGβ-function in
powers of for example 2− 1/ν and solving directly the fixed-point equationβ(ν∗) = 0.

We have tried to implement this idea but the main problem we have faced is that the
general structure of series generated by this set of transformations is rather complicated and
therefore the apparent errors are quite large (a problem which already limits the accuracy of
the pseudo-epsilon expansion). Therefore the method has mainly been used as a check of
the consistency among the data generated by more direct summation. It is possible that more
accurate constraints could be obtained with more work to better understand the convergence
of these new series, but we eventually generated so many data that it became difficult to
analyse all of them with the same care.

5. Numerical results

Let us first considerd = 3 results. The values ofg∗ have been obtained by looking for
the zeros of the summed RG functionβ(g). The various methods explained in section 3
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have been used, shifts 0, 1, 2, generating three set of values for eachN , depending on three
parametersb, q, r. Quoted errors forg∗ reflect the apparent convergence with the orderk

(k 6 7), the sensitivity ofg∗ to a variation of the parametersb, q, r around optimal values
as well as the spread between different shifts. As additional checks we have looked for the
zeros of the functionν(g)β(g) (a rather arbitrary choice with the weak motivation that the
derivative yields the exponentθ = ων) and calculatedg∗ from the pseudo-expansion (see
[2] for details). Final results are reported in table 1 (table 3 forN = 4).

In view of what concerns the values of exponents, we have summed the seven (six for
N = 4) loop series at the values ofg∗ determined before. We have summed independently
the five exponentsγ, β, ν, δ, η by using the three parametersb, q, r for each exponent (and
its inverse) and shifts 0, 1 (shift 2 was considered only as a check). Again, errors have been
estimated by decreasing the order and looking at the spread between summation of different
equivalent series, as explained in section 3. Additional checks have been derived from
pseudo-expansion and exponents’ correlation analysis, introduced in section 4. Tables 1
and 3 report the results of the analysis.

In view of the ε-expansion, the procedure is the same as for thed = 3 series, apart
from the fact that theg∗ step is bypassed, the series being summed atε = 1 for the physical
dimension 3.

More precisely we have summed the genuineε series for the exponents (called ‘free’
in table 2) and we also summed the modified series

S(d) ≡ S(d)− S(2)
d − 2

in which for each exponent is imposed the exact value atd = 2 (referred to as ‘bc’, with
boundary conditions, in table 2). ForN = 0, 1 thed = 2 exact exponents are obtained from
the underlying conformal theories, forN = 2 from the identification with the Kosterlitz–
Thouless transition, while forN > 2 the behaviour neard = 2 can be obtained from the
O(N) nonlinearσ -model.

The general conclusions are the following. By imposing boundary conditions, we
decrease the apparent errors forN = 0. ForN = 1 apparent errors do not change very
much, however, the central values are slightly modified. ForN > 2 the convergence of
the series with boundary condition is worse and in table 2 we report only central values for
the exponents for which the convergence seems reasonable. Errors can approximately be
inferred from the difference with the free values and the corresponding apparent errors.

6. Updated values for theN = 1 equation of state and critical exponents

The new values of the critical exponents obtained in this work directly affect the
determination of the scaling equation of state for theN = 1, d = 3 case, by the method
presented in [13]. We thus report here the new estimates. The results for theε-expansion
have also been revised (in particular the errors on amplitude ratios have been reconsidered).

We recall that our starting point was an estimation of the values of coefficientsFk of
small magnetization expansion for the derivative of the effective potentialV (free energy)
with respect to the scaled renormalized fieldz (magnetization)

∂V

∂z
= z+ 1

6
z3+

∑
k=2

F2k+1(g)z
2k+1. (6.1)

These coefficientsFk have been summed in [13] by using the available series up to five
loops [26–28] and are reported in table 6, compared with results of other techniques (a
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Table 6. Equation of state. (HT= high temperature, MC= Monte Carlo, ERG= exact
renomalization group.)

g∗ F5 F7 × 104 F9 × 105

ε− exp., this work 23.3 0.017 7± 0.001 0 4.8± 0.6 −3.3± 0.3
ε−exp., [70, 38] 23.4± 0.1 0.017 15± 0.000 09 4.9± 0.6 −5.5± 4
d = 3, this work 23.64± 0.07 0.017 11± 0.000 07 4.9± 0.5 −7± 5
d = 3 [39] 23.71 0.017 03 10
HT [40] 23.72± 1.49 0.020 5± 0.005 2
HT [37] 24.45± 0.15 0.017 974± 0.000 15
HT [41] 23.69± 0.10 0.016 8± 0.001 2 5.4± 0.7 −2.3± 1.1
MC [42] 23.3± 0.5 0.022 7± 0.002 6
MC [43] 24.5± 0.2 0.027± 0.002 23.6± 4
ERG [44] 28.9 0.016 4.3
ERG [47] 20.72± 0.01 0.017 19± 0.000 04 4.9± 0.1 −5.2± 0.3

misprint in the last digit of the value of̃g∗ has been corrected). A uniform approximation
for the equation of state has then be provided by the determination of the auxiliary function
h(θ) defined by the reparametrization [31, 22, 23]:

z = ρθ/(1− θ2)β (6.2)

h(θ) = ρ−1(1− θ2)βδF (z(θ)). (6.3)

The order-dependent mapping technique [69] has been used to improve convergence of the
small θ -expansion by an optimal choice of the parameterρ.

The new result coming from the revised values ofγ, β is

h(θ)/θ = 1− 0.762(3) θ2+ 0.0082(10) θ4 (6.4)

that is obtained fromρ2 = 2.86. This expression ofh(θ) has a zero at

θ2
0 = 1.33 (6.5)

to which corresponds the value of the complex rootz0 of F(z), |z0| = 2.80 (the phase,
given by equation 6.2, is−iπβ).

The revisedε-expansion estimations ofFk (in table 6) and of critical amplitudes
presented in this paper are obtained using the revisedγ, β of table 2 and the following
expression ofh(θ) (summed atε = 1):

h(θ)/θ = 1− 0.72(6)θ2+ 0.0136(20)θ4. (6.6)

It should be emphatized that while critical amplitudes and the equation of state are universal
quantities,h(θ) is not a universal function; in particular the variableθ of ε-expansion should
not be identified with the corresponding variable of thed = 3 analysis, because they are
defined from a different mapping in equation (6.2), (differentρ andβ). It follows thath(θ)
of the two methods (and their errors) cannot be compared directly.

Our value ofg∗ from ε-expansion (in table 6) has been obtained from our own analysis
of O(ε4) series of [70]. We also report in table 6 the recent results of [38] obtained by
a direct summation of O(ε3) series forFk (imposed by imposing boundary conditions at
smaller dimensions).
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Table 7. Amplitude ratios. (HT= high temperature, MC= Monte Carlo.)

A+/A− C+/C− Rc Rχ

ε − exp., [24, 23] 0.524± 0.010 4.9 1.67
ε − exp., this work 0.527± 0.037 4.73± 0.16 0.0569± 0.0035 1.648± 0.036
d = 3, [25] 0.541± 0.014 4.77± 0.30 0.0594± 0.001 1.7
d = 3, this work 0.537± 0.019 4.79± 0.10 0.0574± 0.0020 1.669± 0.018
HT series [32, 33] 0.523± 0.009 4.95± 0.15 0.0581± 0.0010 1.75
MC [68] 0.560± 0.010 4.75± 0.03
bin. mix. 0.56± 0.02 4.3± 0.3 0.050± 0.015 1.75± 0.30
liqu.-vap. 0.48-0.53 4.8− 5.2 0.047± 0.010 1.69± 0.14
magn. syst. 0.49− 0.54 4.9± 0.5

Table 8. Other amplitude ratios.

R0 R3 C+4 /C
−
4

high-temperature series [37] 0.127 5± 0.000 3 6.4± 0.2 −9.0± 0.3
d = 3, this work 0.125 84± 0.000 13 6.08± 0.06 −9.1± 0.6
ε-expansion, this work 0.127± 0.002 6.07± 0.19 −8.6± 1.5

Widom’s scaling functionf (x) (with f (−1) = 0 andf (0) = 1) can easily be derived
by (numerically) solving the following system:

f (x) = θ−δh(θ)/h(1)

x =
(
−1− θ2

1− θ2
0

)(
θ0

θ

)1/β . (6.7)

From equation 6.7 and the revised values of the critical exponents we can calculate
various critical amplitude ratios that are reported in tables 7 and 8 and are compared with
other theoretical and experimental results (see [34] for a report on the subject). The reader
can find all definitions and more details in [13].

7. Conclusions

Before discussing our results, let us review the results for critical exponents obtained by
other theoretical methods or experiments.

The previous most accurate determinations of the critical exponents of the O(N) vector
model, from quantum field theory and RG, have been reported in [1, 2] and are shown in
table 9 (we refer to these results as LeGuillou–Zinn-Justin (LG–ZJ)). In table 10 we report
the Murray–Nickel predictions (direct fit ofg series) with the authors’ preferred choice of
g̃∗ (they reported only summation errors; errors fromg̃∗ should be added). In table 11 we
list some values forN = 4 obtained from Pad́e Borel summation ofd = 3 series up to six
loops (see [39] where results for many values ofN > 3 are given). An analysis based on
order-dependent mapping [67] ofd = 3 series can be found in [69]. In table 12 we report
the previous analysis ofε-expansion while in table 13 we quote some recent results. Other
available theoretical predictions come from the analysis of high-temperature series in lattice
models, table 14, and Monte Carlo simulations table 15. Finally, in table 16 we report for
completeness some estimates from the truncated ‘exact renormalization group’ approach.
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Table 9. Estimates of critical exponents in the O(N) symmetric(φ2)23 field theory LG–ZJ.

N 0 1 2 3

g̃∗ 1.421± 0.008 1.416± 0.005 1.406± 0.004 1.391± 0.004
γ 1.1615± 0.0020 1.2405± 0.0015 1.316± 0.0025 1.386± 0.0040
ν 0.5880± 0.0015 0.6300± 0.0015 0.6695± 0.0020 0.705± 0.0030
η 0.027± 0.004 0.032± 0.003 0.033± 0.004 0.033± 0.004
β 0.302± 0.0015 0.325± 0.0015 0.3455± 0.0020 0.3645± 0.0025
α 0.236± 0.0045 0.110± 0.0045 −0.007± 0.006 −0.115± 0.009
ω 0.80± 0.04 0.79± 0.03 0.78± 0.025 0.78± 0.02
θ 0.470± 0.025 0.498± 0.020 0.522± 0.0018 0.550± 0.0016

Table 10. Critical exponents: direct fit ofd = 3 series (error from̃g∗ is not reported).

N Ref. g̃∗ γ ν η

0 [46] 1.39 1.1569± 0.0004 0.5872± 0.0004 0.0297± 0.0009
1 [46] 1.40 1.2378± 0.0006 0.6301± 0.0005 0.0355± 0.0009
2 [46] 1.40 1.3178± 0.0010 0.6715± 0.0007 0.0377± 0.0006
3 [46] 1.39 1.3926± 0.0013 0.7096± 0.0008 0.0374± 0.0004

Table 11. Critical exponents: results of Padé Borel summation forN = 4, [36].

N Ref. g̃∗ γ ν η

4 [36] 1.369 1.449 0.738 0.036

Table 12. Estimates of critical exponents: previousε expansion results (LG–ZJ).

N 0 1 2 3

γ 1.157± 0.003 1.2390± 0.0025 1.315± 0.007 1.390± 0.010
ν 0.5880± 0.0015 0.6310± 0.0015 0.671± 0.005 0.710± 0.007
η 0.0320± 0.0025 0.0375± 0.0025 0.040± 0.003 0.040± 0.003
β 0.3035± 0.0020 0.3270± 0.0015 0.3485± 0.0035 0.368± 0.004
ω 0.82± 0.04 0.81± 0.04 0.80± 0.04 0.79± 0.04

In view of experimental determinations of critical exponents, a few significant results
are displayed in table 17.

7.1. 3D series

In general the new estimates displayed in table 1 are more accurate than the previous LG–ZJ
results. They are compatible within errors with the previous analysis. A closer inspection
shows, however, some significant changes which require discussion.

The main effect comes from the new (and smaller) values of the fixed point coupling
constant forN < 3. The changes are a direct consequence of the new techniques that
we have introduced. In the old calculation LG–ZJ had noticed two puzzling features: the
optimal values of the parameterb were somewhat large, compared with what large-order
behaviour suggested. Moreover, the three shifts 0, 1, 2 gave strongly oscillating results.
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Table 13. Estimates of critical exponents fromε-expansion [70].

N 0 1 2 3

g̃∗(O(ε4)) 1.390± 0.017 1.397± 0.018 1.413± 0.013 1.387± 0.007
γ 1.1559± 0.0010 1.240± 0.005 1.304± 0.007 1.372± 0.006
ν 0.5882± 0.0011 0.631± 0.003 0.664± 0.003 0.699± 0.004

Table 14. Critical exponents for Ising-like systems: high-temperature series.

N Ref. γ ν α θ = ων
0 [49] 1.159 5± 0.0012 0.588± 0.001
0 [50] 1.161 93± 0.0001 0.588± 0.001
1 [15] 1.239± 0.002 0.631± 0.003
1 [16] 1.238 5± 0.0025 0.6305± 0.0015 0.57± 0.07
1 [17] 1.239± 0.003 0.631± 0.004
1 [18] 1.239 5± 0.0004 0.632± 0.001 0.105± 0.007 0.54± 0.05
1 [19] 1.239± 0.003 0.632± 0.003 0.101± 0.004
1 [20] 1.237± 0.002 0.630± 0.0015 0.52± 0.03
1 [55] 0.104± 0.004
1 [49] 1.238 5± 0.0005 0.6310± 0.0005
1 [59] 1.237± 0.004 0.108± 0.005
2 [49] 1.323± 0.003 0.674± 0.003
2 [51] 1.323± 0.015 0.670± 0.007
3 [49] 1.402± 0.003 0.714± 0.002
3 [52] 1.40± 0.03 0.72± 0.01
4 [49] 1.474± 0.004 0.750± 0.003

Table 15. Critical exponents: Monte Carlo.

N Ref. γ ν β η θ = ων
0 [53, 54] 1.1575± 0.0006 0.587 7± 0.000 6

0 [71] 0.587 58± 0.000 07 0.515+0.017
−0.007

1 [57] 0.631± 0.001 0.3269± 0.0006 0.038± 0.002
1 [56] 0.628 9± 0.000 8
1 [58] 0.625± 0.001 0.0025± 0.006 0.44
1 [62] 0.6294± 0.0009 0.0374± 0.0014 0.55± 0.06
2 [60] 1.324± 0.001 0.664± 0.006
2 [61] 1.323± 0.002 0.670± 0.002
2 [62] 1.316± 0.003 0.6721± 0.0013 0.042± 0.002 0.54± 0.08
3 [63] 1.3896± 0.0070 0.703 6± 0.002 3 0.362± 0.004 0.0027± 0.002
3 [62] 1.396± 0.003 0.712 8± 0.001 4 0.041± 0.002 0.51± 0.11
4 [62] 1.476± 0.002 0.752 5± 0.001 0 0.038± 0.001
4 [64] 1.477± 0.018 0.748± 0.009 0.3836± 0.0046

Introduction of the new parameterr (see equation 3.7) has shown that the old apparent
convergence corresponded to an unstable region of parameters. By varyingr we find a
region where these problems are solved to a large extent: the results are less sensitive,
various shifts agree, and all parameters have more reasonable values. Figure 1 exemplifies
this situation for theN = 0 case.

Another example exhibited a similar instability atr = 0: γ , N = 0, d = 3. This
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Table 16. Critical exponents: ‘exact renormalization group’ estimates.

N Ref. g̃∗ γ ν η θ = ων
1 [44] 1.726 1.247 0.638 0.045
2 [44] 1.675 1.371 0.700 0.042
3 [44] 1.619 1.474 0.752 0.038
4 [44] 1.566 1.556 0.791 0.034
1 [47] 0.618± 0.014 0.054 0.56± 0.07
1 [65] 0.6262± 0.0013
1 [72] 0.625± 0.007 0.030± 0.005 0.48± 0.04

Table 17. Critical exponents: selected recent experiments.

N Ref. γ ν β α θ = ων
0 [48] 0.586± 0.004
1 [73] 0.107± 0.006
1 [74, 75, 80] 1.25± 0.01 0.64± 0.01 0.109± 0.006 0.57± 0.09
1 [76] 1.233± 0.010 0.327± 0.002 0.51± 0.03
2 [14, 77] 0.6708± 0.0004 −0.012 85± 0.000 38
2 [78] 0.6705± 0.0006

(as well as the decrease induced from that ofg∗) explains the new different value that we
obtained here.

Finally, N = 3 values show a consistent effect: the three exponentsγ, ν, β increase.
This simply suggests thatN = 3 errors had been underestimated in the LG–ZJ analysis.

Conversely the values ofν, N = 0, 1, 2 are quite stable, even though the corresponding
values ofg∗ have changed. This is due to a very good apparent convergence of the pseudo-
epsilon expansion (on which previous analysis partially relied) at the previous order.

The apparent errors have generally been reduced, as should be expected, except for
N = 3 (see the comment above). The improvement is particularly significant for the
exponentη that was poorly determined before. With a few exceptions, the general trend
for a given exponent is the increase of the direct summation error withN . This effect has
a simple explanation: our summation method relies on the large-order behaviour analysis,
and the asymptotic regime sets in later whenN increases [79]. Perhaps clever use of the
knowledge coming from the largeN expansion could improve the situation.

Note, finally, that the term added to two of the three RG series has allowed us not only
to decrease apparent errors but also to estimate them more reliably.

For several exponents (such as, e.g.γ (N = 1)) errors are now dominated by errors
induced by the determination ofg∗. To further improve the situation it will be necessary to
also add a new term to the RGβ-function.

7.2. (Free)ε-expansion and 3D series

Comparison with the previous LG–ZJε estimates shows no striking effect, small deviations
are due to the use of corrected series.

For the exponentν the consistency between 3D andε results remains very good at allN .
The situation has markedly improved for the exponentγ , N = 0: there is still a systematic
discrepancy in the central values for the exponents (about 0.002), but the difference is



Critical exponents of theN -vector model 8117

reduced by more than a factor of 2, which is quite encouraging. A similar comment applies
to the central values of the exponentη N = 0, . . . ,3, where the discrepancy is also reduced
by a factor of 2. In view of theN = 4 prediction, the agreement with the corresponding
d = 3 results is quite satisfactory but apparent errors are large.

One point should, however, be stressed: since the series are shorter it is more difficult
to assess apparent errors and the errors we quote are thus less reliable than for thed = 3
series.

7.3. Free and boundary conditionε-expansion

For theε-expansion we report a second set of values, obtained by imposing the exactd = 2
values, referred to as bc (i.e. with boundary conditions) in table 2 to distinguish them from
the unconstrainted values denoted by free. Some remarks are in order about the bc approach.
First we do not know the analytic structure of exponents neard = 2. The only piece of
evidence comes from using theε-expansion ford = 2. ForN = 0 the agreement with exact
results is quite good [8], suggesting thatd = 2 is a regular point. ForN = 1 the agreement
is less striking, leaving room for some complex behaviour. For valuesN > 2 there are
indications (IR-renormalons of thed = 2 nonlinearσ -model) thatd = 2 corresponds to an
essential singularity (probably non-Borel summable). It is then easy to construct examples
where fitting leads to worse results.

Second, in the caseN > 2 the new series have a more complicated structure which
makes summation (which is a form of extrapolating series to higher orders) and even more
error estimations difficult.

Although the two analyses give compatible results, it happens that bc has the general
tendency to give values ofγ, ν for N > 2 larger than free ones and values ofη for
N > 2 smaller than free ones. This point is understood by remembering that atd = 2 the
correspondingγ, ν,1/η are infinite and thus it is reasonable that imposing this behaviour
at d = 2 tends to increase the value of the exponent atd = 3.

NU N=2

0.664

0.666

0.668

0.67

0.672

0.674

0.676

ht bc

mc b

mc j

ep pv

ep lz

ep gz

d3 lz

d3 gz

He go

He li

Figure 2. Comparison between various estimates of the exponentν, N = 2: He li from [14, 77],
He go from [78], d3 gz from the present work (d = 3), d3 lz from LG–ZJ (d = 3), ep gz from
the present work (ε), ep lz from LG–ZJ (ε), ep pv from [70] (ε), mc j from [61], mc b from
[62] and ht bc from [49].
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Finally, it is also remarkable that forN = 0 the bc errors are smaller than the free ones.

7.4. Other methods

The general agreement between the high-temperature series, the Monte Carlo results, and
the newd = 3 determinations is in general improved. This in particular applies to the self
avoiding walks where recent long simulations provide very accurate estimates.

7.5. Experiments

The improved agreement of these results with the recent measures on superfluid helium
systems,N = 2, is remarkable and is displayed graphically in figure 2. Despite our efforts,
the best experimental value is still much more accurate than the theoretical estimate. In all
other cases the agreement with experiments is good, as seen from table 17.
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Appendix. Seriesd = 3

We report here the seven-loop series for the O(N) symmetric(φ2)2 theory,N = 0, 1, 2, 3,
computed by Murray and Nickel [46]. The functionsη(g̃), η2(g̃) below are defined by

η(g̃) = md logZ

dm
η2(g̃) = md logZ2

dm

where the renormalization constant are defined byφ0 =
√
Zφr and (φ2)r = Z2

Z
(φ0)

2

(subscript 0,r indicate respectively bare and renormalized fields). The critical exponents
η, ν can be found by the identificationη = η(g̃∗) and ν = (2+ η2(g̃

∗) − η(g̃∗))−1. The
symmetry numberN is reported in square brackets below.

η[0] = g̃2

108
+ 0.000 771 3750̃g3+ 0.001 589 8706̃g4− 0.000 660 6149̃g5

+0.001 410 3421̃g6− 0.001 901 867̃g7

η[1] = 8g̃2

729
+ 0.000 914 2223̃g3+ 0.001 796 2229̃g4− 0.000 653 6980̃g5

+0.001 387 8101̃g6− 0.001 697 694̃g7

η[2] = 8g̃2

675
+ 0.000 987 3600̃g3+ 0.001 836 8107̃g4− 0.000 586 3264̃g5

+0.001 251 3930̃g6− 0.001 395 129̃g7

η[3] = 40g̃2

3267
+ 0.001 020 0000̃g3+ 0.001 791 9257̃g4− 0.000 504 0977̃g5

+0.001 088 3237̃g6− 0.001 111 499̃g7

η2[0] = −g̃
4
+ g̃

2

16
− 0.035 767 2729̃g3+ 0.034 374 8465̃g4− 0.040 895 8349̃g5
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+0.059 705 0472̃g6− 0.099 284 87̃g7

η2[1] = −g̃
3
+ 2g̃2

27
− 0.044 310 2531̃g3+ 0.039 519 5688̃g4− 0.044 400 3474̃g5

+0.060 363 4414̃g6− 0.093 249 48̃g7

η2[2] = −2g̃

5
+ 2g̃2

25
− 0.049 513 4446̃g3+ 0.040 788 1055̃g4− 0.043 761 9509̃g5

+0.055 557 5703̃g6− 0.080 413 36̃g7

η2[3] = −5g̃

11
+ 10g̃2

121
− 0.052 551 9564̃g3+ 0.039 964 0005̃g4− 0.041 321 9917̃g5

+0.049 092 9344̃g6− 0.067 086 30̃g7.
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(New York: Plenum)
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Brézin E, Wallace D J and Wilson K G 1972Phys. Rev. Lett.29 591
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[66] Parisi G 1979Cargèse Lectures 1977vol B39 (New York: Plenum)
[67] Seznec R and Zinn-Justin J 1979J. Math. Phys.20 1398

Le Guillou J C and Zinn-Justin J 1983Ann. Phys., NY147 57
Guida R, Konishi K and Suzuki H 1995Ann. Phys., NY241 152
Guida R, Konishi K and Suzuki H 1996Ann. Phys., NY249 109
For related work see: Kleinert H and Janke W 1995Phys. Lett.A 206 283

[68] Hasenbusch M and Pinn K 1997J. Phys. A: Math. Gen.submitted
Caselle M and Hasenbusch M 1997J. Phys. A: Math. Gen.30 4963
Caselle M and Hasenbusch M 1998Nucl. Phys. Proc. Suppl.63 613

[69] Kleinert H 1998Phys. Rev.D 57 2264
[70] Pellisetto A and Vicari E 1998Nucl. Phys.B 519 626
[71] Belohorec P and Nickel B G 1997 Accurate universal and two-parameter model results from a Monte-Carlo

renormalization group studyPreprint Guelph University
[72] Travesset A 1998Nucl. Phys. Proc. Suppl.B 63A–C 640
[73] Flewelling A C, Defonseka R J, Khaleeli N, Partee J and Jacobs D T 1996J. Chem. Phys.104 8048
[74] Ramos C A, King A R and Jaccarino V 1989Phys. Rev.B 10 7124
[75] Belanger D P and Yoshizawa H 1987Phys. Rev.B 35 4823
[76] Pestak M W and Chan H W 1984Phys. Rev.B 30 274
[77] Swanson D R, Chui T C P andLipa J A 1992Phys. Rev.B 46 9043

Marek D, Lipa J A and Philips D 1988Phys. Rev.B 38 4465
[78] Goldner L S, Mulders N and Ahlers G 1992J. Low Temp. Phys.93 131
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