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Abstract. Recently the series for two renormalization group functions (corresponding to the
anomalous dimensions of the fieldsand¢?) of the three-dimensional* field theory have been
extended to next order (seven loops) by Murray and Nickel. We examine the influence of these
additional terms on the estimates of critical exponents ofNkeector model, using some new
ideas in the context of the Borel summation techniques. The estimates have slightly changed,
but remain within the errors of the previous evaluation. Exponents such(edated to the

field anomalous dimension), which were poorly determined in the previous evaluation of Le
Guillou—Zinn-Justin, have seen their apparent errors significantly decrease. More importantly,
perhaps, summation errors are better determined.

The change in exponents affects the recently determined ratios of amplitudes and we report
the corresponding new values.

Finally, because an error has been discovered in the last order of the publishdd- d
expansions (ordes®), we have also re-analysed the determination of exponents from-the
expansion.

The conclusion is that the general agreement betweexpansion and three-dimensional
series has improved with respect to Le Guillou-Zinn-Justin.

1. Introduction and summary of results

Recently the perturbative expansions of the anomalous dimensions of the¢fialad¢?
for the QN) symmetric(¢?)?_j, field theory have been extended to next order (seven loops)
in the caseN = 0,...,3 by Murray and Nickel [46]. This rather impressive result has
led us to re-examine the determinations of the critical exponent¥vfer 0 (polymers),
N =1 (Ising-like systems)N = 2 (superfluid helium) an&v = 3 (real ferromagnets). For
completeness we have added results (at six loopsyfer 4 which correspond to the Higgs
sector of the standard model at finite temperature. A limitation of this work is that the
series for the renormalization group (R@Xunctions have not been extended (they remain
at six loops) and for several exponents this is now the main source of error.

Critical exponents have also been calculated in the forma ef 4 — d expansions,
up to five loops [11]. Recently, a slight error in the previously published series has been
corrected [12], and this has motivated us to also re-examine the corresponding estimates
(again addingV = 4 results).

For the reader who is not interested in details we summarize our main results for
N =0,...,3intable 1 § = 3) and in table 2 {-expansion) whileN = 4 results for
both methods can be found in table 3. We have chosen central values which satisfy all
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Table 1. Critical exponents of the @QV) models fromd = 3 expansion (present work).

N 0 1 2 3

&Ni 1.413+ 0.006 1411+ 0.004 1403+ 0.003 1390+ 0.004
g* 2663+0.11 2364+ 0.07 2116+ 0.05 1906+ 0.05

y 1.1596+ 0.0020 12396+ 0.0013 13169+ 0.0020 13895+ 0.0050
v 0.5882+ 0.0011 06304+ 0.0013 06703+ 0.0015 07073+ 0.0035
n 0.0284+ 0.0025 00335+ 0.0025 00354+ 0.0025 00355+ 0.0025
B 0.3024+ 0.0008 03258+ 0.0014 03470+ 0.0016 03662+ 0.0025
a 0.235+ 0.003 Q01094+ 0.004 —0.011+ 0.004 —0.1224+0.010
1) 0.812+0.016 Q799+ 0.011 Q789+ 0.011 Q0782+ 0.0013
0 = wv 0.478+ 0.010 Q0504+ 0.008 0529+ 0.009 0553+ 0.012

Table 2. Critical exponents of the @vV) models frome-expansion (present work).

N 0 1 2 3

y (free) 11575+ 0.0060 12355+ 0.0050 13110+ 0.0070 13820+ 0.0090
y (bc) 115714+ 0.0030 12380+ 0.0050 1.317 1.392

v (free) 05875+ 0.0025 06290+ 0.0025 06680+ 0.0035 Q7045+ 0.0055
v (bc) 05878+ 0.0011 06305+0.0025 0.671 0.708

n (free) Q0300+ 0.0050 00360+ 0.0050 00380+ 0.0050 Q0375+ 0.0045
n (bc) 00315+ 0.0035 00365+ 0.0050 0.0370 0.0355

B (free) Q3025400025 03257+£0.0025 (a4ss. 00035 036554 0.0035
g (bc) 03032+ 0.0014 03265+ 0.0015

w 0.828+0.023  0814+0018  0802+0.018 Q794+ 0.018

) 0486+ 0016  0512+0.013  0536+0.015 0559+ 0.017

Table 3. Critical exponents in the @) models fromd = 3 ande-expansion (present work).

d=3 ¢ : free, bc

gy 1377+0.005

* 17.30+0.06
1456+£0010 1448+ 0.015, 1460
0.741£0006 Q737+ 0.008, 0742
0.0350+ 0.0045 0036+ 0.004, Q033
0.3830+0.0045 03820 0.0025

—0.223+0.018 —0.211+0.024
0.774£0020 Q795+ 0.030
0574+0020 Q586+ 0.028

oo

TERT™S = =

scaling relations, but the apparent errors fqn, 8, n in general have been determined
independently. For thé = 3 IR fixed-point valueg* we give results both in the usual field
theory normalization (equations (2.3)) and in the normalization used by Nickel [7],

N +8
481
which is such that the fixed-point value is close to 1.

Note that in table 1, in addition to the plaiexpansion results (denoted as ‘free’),
we report some additional results denoted as ‘bc’ (i.e. with a boundary condition) that
try to incorporate the knowledge of the exa¢t= 2 values by summing the series

g=



Critical exponents of theV-vector model 8105

(f(e) — f(2))/(2 — &), where f(g) is an exponent with a known two-dimensional (2D)
value. In the case of the exponanfor N = 0 thed = 1 value is also known. We have
checked that incorporating this additional piece of information has no significant impact on
the final result.

For N > 2 the analysis of the series with boundary conditions is quite difficult.
Therefore we present here only central values, and no error estimates. Values and errors of
the corresponding free estimates give some indication.

Let us finally emphasize that we have no real knowledge about the analytic properties
of exponents whed approaches 2. Therefore the bc values could be affected by systematic
effects.

This paper is organized as follows. In section 2 we summarize a few ideas about
perturbative expansion at fixetl= 3 dimension and-expansion. In section 3 we briefly
recall the Borel summation method based on a conformal mapping of the complex cut plane.
Several new variations of the practical implementation of the general method are explained.
In section 4 we recall the idea of the pseudo-epsilon expansion and introduce the exponents’
correlation analysis, which consists of eliminating the coupling constant between different
exponents. Section 5 contains a discussion of the numerical results. Finally, the new values
of exponents slightly affect the recently published results [13] for the equation of state of
the three-dimensional (3D) Ising model, and we present the new determination in section 6
(as well as a revised version efexpansion predictions).

2. Renormalized¢” field theory: e-expansion and 3D perturbation series

In this paper the general framework is thg?)2, O(N) symmetric, quantum field theory
whose bare action is:

H(p) = / {3[0,0 ()% + 3220%(x) + 3 ra[¢?(1)]%} dx. (2.1)

We recall that near the critical temperatufg A, is a linear measure of the temperature.
If we denote bya,. the value for which the theory becomes massléss=(7,) then the
parameter

t=l—ApxT —T, (2.2)

characterizes the deviation from the critical temperature.

The (¢?)? field theory is renormalizable in four dimensions, and to eliminate UV
divergences (fod < 4 the theory is super-renormalizable) one introduces renormalized
correlation functions. This involves choosing a renormalization scheme and then trading
the bare parameters, 14 for a (scheme-dependent) renormalized massd dimensionless
coupling g. The mass parameten is proportional to the physical mass, or inverse
correlation length, of the high-temperature phase. It behaves fr7 — T, — 0, as
m  t”, wherev is the correlation length exponent (see [3] for details).

RG arguments state that the long-distance properties of the massless (critical) theory are
governed by non-trivial IR fixed pointg*, solution of the equation

B =0 with 8'(g*) = w > 0.

The anomalous dimensiongg) and7,(g), of the renormalized fielg, = ¢/+/Z and
of the renormalized composite operatef]; = (Z»/Z)¢$? respectively, evaluated gt= g*
then yield the two independent combinations of critical exponents fe-g.n(g*)). The
explicit forms of the RG functiong(g), n(g), n2(g) depend on the specific renormalization
scheme.
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The space dimension relevant for statistical physicg is 3 (occasionallyd = 2). In
this case one faces a serious problem: ordinary perturbative expansgjan the massless
theory is IR divergent for any fixed dimensioh d < 4. A solution to this problem was
first provided by Wilson—Fisher's = 4—d expansion. The idea is to avoid IR problems by
expanding ine = 4—d as well as in the coupling constagit IR singularities are then only
logarithmic and can be dealt with. The expansion to the highest order presently available
have been performed within the minimal subtractdB scheme, [11, 12]. In this scheme
the d-dimensional RG3-function takes the exact form

Bais) (gws €) = —egwis + [ (gws) = —egws + Olggyg)-
The fixed-point equation

.B(I\Ts) (g:/TS’ €)=0
can be solved in the form of amexpansion. Thel.-loop expansion of thes-function
then yieIng;TS up to orders’. By replacinggys by g,TTS in the perturbative expansion of
the anomalous dimensiong 1, one finally obtains the-expansion of critical exponents.
Note that whileg* is scheme dependent, theexpansion for universal quantities is scheme
independent.

While this method directly yields a formal expansion for exponents a practical problem
arises when one wishes to determine exponents for a physical vatuékefs = 1 (d = 3).
Indeed thee-expansion is divergent as first empirically noted in [5] and later confirmed
by the large-order behaviour analysis. A summation method is therefore required to obtain
accurate results.

Following Parisi’s suggestion [6] perturbation series have also been calculated directly
in three dimensions in the framework of the massive renormalized theory where correlation
functionsT'(™ of the renormalized fiela, are fixed by the normalization conditions

r@(p;m, g) = m? + p* + O(p* (2.33)
I (pi =0;m,g) =mg. (2.30)

One may be surprised by the introduction of coupling and field renormalizations in a super-
renormalizable theory. The reasons are simple, the bare coupling constant becomes infinite
when the physical mass goes to zero. Simultaneously the field renormalization also diverges
(see [3, 4)).

Series up to six loops obtained in this scheme in [7] #r= 0,...,3 have been
generalized in [36] to anw. Recently, in [46] the results fay and n, (but not for 8(g))
have been extended to seven loops for= 0,..., 3 (see the appendix). One problem
here is that the valug* of the fixed-point coupling is affected by summation errors on
the B-function. Errors ong* then induce systematic errors for all critical exponents (see
section 3).

3. Series summation

Perturbative quantum field theory generates divergent series. Summing such series by simply
adding successive terms is meaningful provided coupling constants remain small enough (as
in quantum electro-dynamics (QED)). Here, however, the expansion parameter, the fixed-
point valueg*, is a number of order 1: one therefore faces the problem of evaluating the
sum of divergent series in a non-trivial regime.

In this paper the Borel-Leroy transformation has been used, followed by a conformal
mapping [33] (a new version of the method developed in [8] for critical exponents) to
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sum the series. We recall that the Borel summability of ¢fietheory in two and three
dimensions has been established in [32].

Let S(z) be any (Borel summable) function whose series has to be summed. We
transform the series:

S@2) =) S (3.1)
k=0
into
S(z) =Y Bi(b) f h P e uk (zr) dt (3.2)
k=0 0
with
Vl+as -1
S Sl e 3.3
u(s) NI (3.3)

The coefficientsB, are calculated by expanding in powerszothe r.h.s. of equation 3.2
and identifying with expansion 3.1. The constaritas been determined by the large-order
behaviour analysis. The explicit values are

9
a=014777423% —— (3.4)
N +8
for the perturbative expansion ih= 3 dimensions and
3
= 3.5

““N+s8 (35
for the e = 4 — d expansion. We map the Borel plane, cut at the instanton singularity
s = —1/a, onto a circle in thex-plane in such a way to enforce maximal analyticity and

thus to optimize the rate of convergence (for details see, e.g. [3]).

3.1. Additional technical details

Following an idea introduced in [8] for the summation of thexpansion we have in
addition made a homographic transformation on the coupling constardisplace possible
singularities in the complex-plane:

72=7/A+q7). (3.6)

We have looked for values of the parametgm@nda for which the results were particularly
insensitive to the ordek: in practice the absolute differences of results corresponding to
three successive orders have been minimized. When several solutions were found the least
sensitive solution was chosen. Moreover, the valué diad to stay within a reasonable
range around the value predicted by the large-order behaviour.

For each seriess(z) we have applied the summation procedure botlStand 1/S.
Finally, we have introduced ‘shifts’, for each series summing

s—1
S(z) = (S(z) - ZSkZ">/Z’~
k=0

In practice only the casas= 0 (no subtractions) and= 1, 2 have proven useful. Thus, for
each exponent we have obtained six results whose spread gives an indication of summation
errors.
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gl vs r, N=0
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1._
1.4225 T
4 shift=0
1.42 *
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Cw " —h, aaaad . .
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Figure 1. Values ofg*, N = 0, as a function of the parameterfor shifts Q 1, 2.

In some examples (in particulgr) shifts have produced strongly oscillating results. It
has appeared that it would be useful to somehow interpolate between shifted series. An
idea, new to this work, has been to consider the combination

S=01+rg)S 3.7)

wherer has been used as a third variational parameter (dividing of course the final result by
the factor(1+rg)). The precise value of has been obtained by minimizing the dependence

in b. This new additional parameter has proven quite useful: it has allowed us, as expected,
to obtain series with better apparent convergence as well as better general consistency. It
has also revealed that in a few cases the apparent convergence &t was deceptive,

the results being unstable with respect to a variation.oThese cases have already been
singled out by the extreme values of the optirhal parameters.

The main consequence of this new approach has been a decrease in the valties of
although the length of the series has not changed (better agreement between different shifts
at non-zeror, see figure 1), and of for N = 0 andd = 3 (bestr = 0 values of the
exponent revealed to be unstable).

3.2. Errors

The summation error for any quantity(z) has been estimated by looking at differences
between successive orders, sensitivity to the parameters and spread between all results
concerning the same exponent (this has also involved checking scaling relations).

In the case of the 3D perturbative expansion, the total error for each expSrierihe
sum of the intrinsic summation error at fixgd, AS, and the error induced by the error in

g*, Ag*
S=8*+AS+ <d—‘?>
dg

AG". (3.8)

&
We thus also give the derivatives of exponents with respeg*to Two derivatives are
displayed in table 4, all of the others can be deduced from scaling relations. The reader can
thus infer the sensitivity of exponents to a change in the values and errgfis of

Let us stress here that in our tables we quote the total combined error (as in [1, 2]) while

only the intrinsic summation error is reported in table 10 for the alternative result of [46].
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Table 4. Critical exponents: sensitivity t9* determination.

N 0 1 2 3 4

dy/dg* 010 018 028 0.39 0.50
dv/dg* 0.069 0.11 017 022 0.29

In view of the e-expansion, the total error is directly given by the intrinsic summation
error of each exponent and the situation is in principle more favourable: the only problem
then is that the available series are shorter (they are technically more difficult to obtain) and
the summation error is then bigger!

3.3. Remarks.

The comparison between results coming from ditket 3 series and-expansion is not only
useful to test the accuracy of our numerical methods. Their consistency is also important
to test various assumptions or properties.

In the case of thel = 3 expansion we assume more analyticity in the Borel plane as
has been rigorously proven. Semiclassical instanton analysis indicates that our assumption
is quite plausible but this is not a proof. Moreover, several authors (see e.g. [15, 70])
have argued that RG functions are not regulag at ¢*. We have of course checked that
these singularities, if they exist, are weak. Numerical evidence is that all RG functions are
at least differentiable ag = g* (including B’'(g) which yieldsw). We cannot of course
exclude the situation where these singularities are so weak as to escape detection, but strong
enough to influence results at the level of accuracy at which exponents are determined. Our
apparent errors could then be underestimated. Nevertheless it should be emphasized that
if the hypothesis of analyticity in the cut Borel plane holds, the Borel summation should
nevertheless converge asymptotically even in the presence of confluent singularities.

In view of the e-expansion, problems are more serious, since Borel summability has
not even be proven. Moreover, there are indications that UV-renormalon singularities could
prevent Borel summability, [66]. These singularities are related to the large-momentum
behaviour of renormalized perturbation theory (the ‘Landau ghost’ problem). A plausible
conjecture is that quantities related to the massless theory are renormalon-free since they can
be calculated in the theory with UV cut-off. This particularly applies to critical exponents.
Instead the question remains open for quantities only defined in the massive renormalized
theory, such as the fixed-point coupling constgiite) defined by (2.3). Note that because
the ¢ series are rather short, empirical evidence is weak.

4. Pseudo-epsilon expansion and exponents’ correlation analysis

In [2], a method was introduced to try to circumvent the problem of systematic errors
induced by an error in the determination gf: the so-called pseudo-epsilon expansion.
The idea is to mimic the-expansion and introduce a new paramétén terms of which
g* is expanded as well as all critical exponents.

Thed = 3 B-function in the scheme given by equations (2.3) have the form:

B(g) = —g + B2Ag)

where 8, begins at ordeg? with a positive coefficient of order 1. We then replace the
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Table 5. Critical exponents: correlation between exponents at the fixed point.

N 0 1 2 3 4

dp/dv d=3) 0.83 059 043 032 0.27

B-function by a new functiorg(g, &)

B(g, &) = —2g + Ba(g)

and expang:* (&), the solution to8(g, £€) = 0, in powers ofs. Eventually we have to sum
the series for the value &f = 1 to recover the initial equation.

This method has been systematically used in [2], and this explains why some of the
new values of exponents we obtain in this work differ less from the previous values of [2]
than the change ig* would lead to expect.

To apply the same method here, we face the problem that the series fé+ftimetion
have not been extended to seven loops, and therefore for the expgnants for example,
the information of the additional seven loops term cannot be used. However,gigice
starts only at ordeg?, to determiney at loop orderL, g*(¢) is required only at loop order
L —1. This also applies to the exponentvhich only depends on, and to which we have
equally applied the summation procedures.

It follows that for N = 0, 1, 2, 3 the pseudo-epsilon expansion yields genuine seven-loop
information onn, 8, with apparent errors much smaller compared with six-loop results.

In this work to try to circumvent the problem of shorf#ig) series ang™* determination,
we have introduced another idea. We have directly eliminated the coupling constant between
a pair of independent exponents. For example we have inverted the rejatio? — 1/v

g =Y g@-1/w
and then expressed other exponents as series-irL2. In this way we have obtained
correlation curves between exponents, which can all eventually be translated into relations
n(v). We have applied the same idea starting from the exponentsexpanding in powers
of 1-1/y and 4— 1/8.

With this in mind it is interesting to consider the derivativeg/dv at the fixed point,
which we thus display in table 5. Other derivatives can be deduced, using scaling relations.
The correlation line can be fixed by taking a point from the list of table 1.

Finally, let us note that we can advance this idea to expanding thgR@ction in
powers of for example 2 1/v and solving directly the fixed-point equatigv*) = O.

We have tried to implement this idea but the main problem we have faced is that the
general structure of series generated by this set of transformations is rather complicated and
therefore the apparent errors are quite large (a problem which already limits the accuracy of
the pseudo-epsilon expansion). Therefore the method has mainly been used as a check of
the consistency among the data generated by more direct summation. It is possible that more
accurate constraints could be obtained with more work to better understand the convergence
of these new series, but we eventually generated so many data that it became difficult to
analyse all of them with the same care.

5. Numerical results

Let us first consided = 3 results. The values of* have been obtained by looking for
the zeros of the summed RG functigiig). The various methods explained in section 3
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have been used, shifts 0 2, generating three set of values for ea¢hdepending on three
parameter®, ¢, r. Quoted errors fog* reflect the apparent convergence with the order

(k < 7), the sensitivity ofg* to a variation of the parametebs ¢, » around optimal values

as well as the spread between different shifts. As additional checks we have looked for the
zeros of the function(g)B(g) (a rather arbitrary choice with the weak motivation that the
derivative yields the exponeiit= wv) and calculate¢* from the pseudo-expansion (see

[2] for details). Final results are reported in table 1 (table 3No& 4).

In view of what concerns the values of exponents, we have summed the seven (six for
N = 4) loop series at the values gf determined before. We have summed independently
the five exponents, 8, v, §, n by using the three parametdrsq, r for each exponent (and
its inverse) and shifts,d (shift 2 was considered only as a check). Again, errors have been
estimated by decreasing the order and looking at the spread between summation of different
equivalent series, as explained in section 3. Additional checks have been derived from
pseudo-expansion and exponents’ correlation analysis, introduced in section 4. Tables 1
and 3 report the results of the analysis.

In view of the e-expansion, the procedure is the same as fordthe 3 series, apart
from the fact that thg* step is bypassed, the series being summed-=atl for the physical
dimension 3.

More precisely we have summed the genuinseries for the exponents (called ‘free’
in table 2) and we also summed the modified series
S(d) — S(2)

d—2
in which for each exponent is imposed the exact valug at 2 (referred to as ‘bc’, with
boundary conditions, in table 2). FoF = 0, 1 thed = 2 exact exponents are obtained from
the underlying conformal theories, fof = 2 from the identification with the Kosterlitz—
Thouless transition, while foN > 2 the behaviour nead = 2 can be obtained from the
O(N) nonlinearo-model.

The general conclusions are the following. By imposing boundary conditions, we
decrease the apparent errors /ér= 0. For N = 1 apparent errors do not change very
much, however, the central values are slightly modified. Fop 2 the convergence of
the series with boundary condition is worse and in table 2 we report only central values for
the exponents for which the convergence seems reasonable. Errors can approximately be
inferred from the difference with the free values and the corresponding apparent errors.

Sd) =

6. Updated values for thelN = 1 equation of state and critical exponents

The new values of the critical exponents obtained in this work directly affect the
determination of the scaling equation of state for ie= 1, 4 = 3 case, by the method
presented in [13]. We thus report here the new estimates. The results forettpansion
have also been revised (in particular the errors on amplitude ratios have been reconsidered).
We recall that our starting point was an estimation of the values of coefficigntd

small magnetization expansion for the derivative of the effective potelitiitee energy)
with respect to the scaled renormalized fielimagnetization)

W vlsy > Fapa(9)2 M (6.1)

0z 6 —
These coefficientd, have been summed in [13] by using the available series up to five
loops [26-28] and are reported in table 6, compared with results of other techniques (a
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Table 6. Equation of state. (HT= high temperature, MGC= Monte Carlo, ERG= exact
renomalization group.)

g* Fs Fy x 104 Fg x 10°
e—exp., thiswork  23.3 00177+ 0.0010 48+06 —33+03
e—exp, [70, 38] 234+0.1 0.017 154 0.00009 49+ 0.6 —-55+4
d = 3, this work 2364+ 0.07 0017 11+ 0.00007 49+ 0.5 —7+5
d =3[39] 2371 001703 10
HT [40] 2372+1.49 002054+ 0.0052
HT [37] 2445+ 0.15 0017974+ 0.000 15
HT [41] 2369+0.10 00168+0.0012 54+07 —-23+11
MC [42] 233+05 0.022 7+ 0.0026
MC [43] 245+0.2 0.027+ 0.002 236+ 4
ERG [44] 289 0.016 43
ERG [47] 2072+0.01 001719+ 0.00004 49+01 -52+03

misprint in the last digit of the value gf* has been corrected). A uniform approximation
for the equation of state has then be provided by the determination of the auxiliary function
h(0) defined by the reparametrization [31, 22, 23]:

7= p0/(1—6%F (6.2)
h0) = p~ 11— 6P F(2(6)). (6.3)

The order-dependent mapping technique [69] has been used to improve convergence of the
small 8-expansion by an optimal choice of the parameter
The new result coming from the revised valuesyof3 is

h(9)/6 = 1 —0.7623) 62 4 0.008210) 6* (6.4)
that is obtained fromp? = 2.86. This expression di(f) has a zero at
62 =1.33 (6.5)

to which corresponds the value of the complex regtof F(z), |z0] = 2.80 (the phase,
given by equation 6.2, is-ing).

The revisede-expansion estimations of; (in table 6) and of critical amplitudes
presented in this paper are obtained using the revjsetl of table 2 and the following
expression ofi(9) (summed at = 1):

h(9)/6 = 1 — 0.72(6)6% + 0.013620)6*. (6.6)

It should be emphatized that while critical amplitudes and the equation of state are universal
guantities1(9) is not a universal function; in particular the variablef ¢-expansion should

not be identified with the corresponding variable of the= 3 analysis, because they are
defined from a different mapping in equation (6.2), (differerand8). It follows that/(6)

of the two methods (and their errors) cannot be compared directly.

Our value ofg* from e-expansion (in table 6) has been obtained from our own analysis
of O(e*) series of [70]. We also report in table 6 the recent results of [38] obtained by
a direct summation of @°) series forF; (imposed by imposing boundary conditions at
smaller dimensions).
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Table 7. Amplitude ratios. (HT= high temperature, MG= Monte Carlo.)

AT/A ct/c- R, Ry
& — exp., [24, 23] 0524+ 0.010 49 167
& —exp., thiswork 0527+ 0.037 473+0.16 00569+ 0.0035 1648+ 0.036
d =3, [25] 0541+ 0014 477+0.30 00594+ 0.001 1.7
d = 3, this work 0537+£0.019 479+0.10 00574+0.0020 1669+ 0.018
HT series [32, 33] 523+ 0.009 495+0.15 00581+0.0010 175
MC [68] 0.560+0.010 475+0.03
bin. mix. 056+ 0.02 43+0.3 0.050+ 0.015 175+ 0.30
liqu.-vap. 0.48-0.53 8-52 0.047+ 0.010 169+ 0.14
magn. syst. 219 - 0.54 49+0.5
Table 8. Other amplitude ratios.

Ro R3 cl/cy

high-temperature series [37] .127 54 0.0003 64+0.2 -9.0+0.3
d = 3, this work 0125844+ 0.00013 608+0.06 —9.1+0.6
g-expansion, this work Q274 0.002 607+019 -86+15

Widom'’s scaling functionf (x) (with f(—1) = 0 and f(0) = 1) can easily be derived
by (numerically) solving the following system:

f(x) =07°h(0)/h(D)

1— 92 90 18
X=|——7—= —
(%))
From equation 6.7 and the revised values of the critical exponents we can calculate
various critical amplitude ratios that are reported in tables 7 and 8 and are compared with

other theoretical and experimental results (see [34] for a report on the subject). The reader
can find all definitions and more details in [13].

(6.7)

7. Conclusions

Before discussing our results, let us review the results for critical exponents obtained by
other theoretical methods or experiments.

The previous most accurate determinations of the critical exponents of(itig v@ctor
model, from quantum field theory and RG, have been reported in [1, 2] and are shown in
table 9 (we refer to these results as LeGuillou—Zinn-Justin (LG—Z2J)). In table 10 we report
the Murray—Nickel predictions (direct fit of series) with the authors’ preferred choice of
g* (they reported only summation errors; errors fr@ginshould be added). In table 11 we
list some values foV = 4 obtained from P&l Borel summation off = 3 series up to six
loops (see [39] where results for many valueshot- 3 are given). An analysis based on
order-dependent mapping [67] df= 3 series can be found in [69]. In table 12 we report
the previous analysis af-expansion while in table 13 we quote some recent results. Other
available theoretical predictions come from the analysis of high-temperature series in lattice
models, table 14, and Monte Carlo simulations table 15. Finally, in table 16 we report for
completeness some estimates from the truncated ‘exact renormalization group’ approach.



8114 R Guida and J Zinn-Justin

Table 9. Estimates of critical exponents in the(®) symmetric(¢2)§ field theory LG-ZJ.

N O 1 2 3

g* 1.421+0.008 1416+ 0.005 1406+ 0.004 1391+ 0.004

y 11615+ 0.0020 12405+ 0.0015 1316=+ 0.0025 1386+ 0.0040
v 0.5880+ 0.0015 06300+ 0.0015 06695+ 0.0020 Q7054+ 0.0030
n 0.027+ 0.004 Q0032+ 0.003 0033+ 0.004 Q0334+ 0.004

B 0.302+ 0.0015 0325+ 0.0015 03455+ 0.0020 03645+ 0.0025
o 0.236+ 0.0045 0110+ 0.0045 —-0.007£0.006 —0.115+0.009

o  0.80+0.04 079+ 0.03 078+ 0.025 Q78+ 0.02

0 0.470+ 0.025 0498+ 0.020 Q05224 0.0018 0550+ 0.0016

Table 10. Critical exponents: direct fit of = 3 series (error frong* is not reported).

Ref. g* y v n
0 [46] 139 11569+0.0004 05872+ 0.0004 Q0297+ 0.0009
1 [46] 140 12378+0.0006 06301+ 0.0005 Q03554+ 0.0009
2 [46] 140 13178+0.0010 06715+ 0.0007 Q0377+ 0.0006
3  [46] 139 13926+0.0013 Q7096+ 0.0008 00374+ 0.0004

Table 11. Critical exponents: results of Padorel summation foV = 4, [36].

N Ref. g* y v n

4 [36] 1.369 1449 0.738 0.036

Table 12. Estimates of critical exponents: previoagxpansion results (LG-ZJ).

N O 1 2 3

y 11574+ 0.003 12390+ 0.0025 13154+ 0.007 1390+ 0.010
v 0.5880+0.0015 06310+0.0015 Q671+ 0.005 Q710+ 0.007
n  0.03204+0.0025 00375+ 0.0025 Q040+ 0.003 Q0040+ 0.003
B 0.3035+0.0020 032704+ 0.0015 03485+0.0035 0368+ 0.004
o 0.82+0.04 081+ 0.04 080+ 0.04 079+ 0.04

In view of experimental determinations of critical exponents, a few significant results
are displayed in table 17.

7.1. 3D series

In general the new estimates displayed in table 1 are more accurate than the previous LG-ZJ
results. They are compatible within errors with the previous analysis. A closer inspection
shows, however, some significant changes which require discussion.

The main effect comes from the new (and smaller) values of the fixed point coupling
constant forN < 3. The changes are a direct consequence of the new techniques that
we have introduced. In the old calculation LG-ZJ had noticed two puzzling features: the
optimal values of the parametérwere somewhat large, compared with what large-order
behaviour suggested. Moreover, the three shifts @ gave strongly oscillating results.
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Table 13. Estimates of critical exponents fromexpansion [70].
N 0 1 2 3
g*(0(e%)  1.390+0.017 1397+ 0.018 1413+0.013 1387+ 0.007
y 1.1559+ 0.0010 1240+ 0.005 1304+0.007 1372+ 0.006
v 0.5882+ 0.0011 0631+0.003 0664+0.003 0699+ 0.004
Table 14. Critical exponents for Ising-like systems: high-temperature series.
N Ref. vy v o 0 = wv
0 [49] 115954+ 0.0012 05884+ 0.001
0 [50] 116193+0.0001 0588+ 0.001
1 [15] 1239+ 0.002 Q0631+ 0.003
1 [16] 123854+ 0.0025 06305+ 0.0015 057+ 0.07
1 [17] 1239+ 0.003 0631+ 0.004
1 [18] 123954+ 0.0004 0632+ 0.001 Q105+ 0.007 Q054+ 0.05
1 [19] 1239+ 0.003 0632+ 0.003 Q0101+ 0.004
1 [20] 1.237+0.002 0630+ 0.0015 052+ 0.03
1 [55] 0.104+ 0.004
1 [49] 123854+ 0.0005 06310+ 0.0005
1 [59] 1237+ 0.004 Q108+ 0.005
2 [49] 1323+0.003 Q674+ 0.003
2 [51] 1323+0.015 Q670+ 0.007
3  [49] 1402+0.003 Q714+ 0.002
3 [52] 140+0.03 072+ 0.01
4  [49] 1474+0.004 Q750+ 0.003
Table 15. Critical exponents: Monte Carlo.
N Ref. y v B n 0 = wv
0 [53,54] 11575+ 0.0006 (0587 7+ 0.0006
0 [71] 0.587 58+ 0.000 07 051510907
1 [57] 0.631+ 0.001 03269+ 0.0006 0038+ 0.002
1 [56] 0.628 9+ 0.0008
1 [58] 0.625+ 0.001 Q0025+ 0.006  0.44
1 [62] 0.6294+ 0.0009 00374+ 0.0014 055+ 0.06
2 [60] 1324+ 0.001 0664+ 0.006
2 [61] 1323+ 0.002 0670+ 0.002
2 [62] 1316+ 0.003 06721+ 0.0013 0042+ 0.002 054+ 0.08
3 [63] 13896+ 0.0070 Q07036+ 0.0023 0362+ 0.004 Q0027+ 0.002
3  [62] 1.396+ 0.003 Q7128+ 0.0014 0041+ 0.002 051+ 0.11
4 [62] 14764+ 0.002 Q7525+ 0.0010 0038+ 0.001
4 [64] 1477+ 0.018 Q748+ 0.009 Q38364+ 0.0046

Introduction of the new parameter(see equation 3.7) has shown that the old apparent
convergence corresponded to an unstable region of parameters. By varwiadfind a
region where these problems are solved to a large extent: the results are less sensitive,
various shifts agree, and all parameters have more reasonable values. Figure 1 exemplifies
this situation for thev = 0 case.

Another example exhibited a similar instability at= 0: y, N = 0, d = 3. This
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Table 16. Critical exponents: ‘exact renormalization group’ estimates.

N Ref. g* y v n 0 = wv

1 [44] 1726 1247 Q638 Q045

2 [44] 1675 1371 Q700 Q042

3  [44] 1619 1474 Q752 Q038

4 [44] 1566 1556 Q791 Q034

1 [47] 0.618+ 0.014 Q054 056+ 0.07
1 [65] 0.6262+ 0.0013

1 [72] 0.625+ 0.007 Q030+ 0.005 048+ 0.04

Table 17. Critical exponents: selected recent experiments.

N Ref. y v B o 0 = wv

0 [48] 0.586+ 0.004

1 [73] 0.107+ 0.006

1 [74,75,80] 125+ 0.01 064+0.01 0109+ 0.006 Q057+ 0.09
1 [76] 1233+ 0.010 Q0327+ 0.002 051+ 0.03
2 [14,77] 06708+ 0.0004 —0.012 854+ 0.000 38

2 [78] 0.6705+ 0.0006

(as well as the decrease induced from thag©f explains the new different value that we
obtained here.
Finally, N = 3 values show a consistent effect: the three expongntsg increase.

This simply suggests that = 3 errors had been underestimated in the LG-ZJ analysis.
Conversely the values of, N = 0, 1, 2 are quite stable, even though the corresponding
values ofg* have changed. This is due to a very good apparent convergence of the pseudo-

epsilon expansion (on which previous analysis partially relied) at the previous order.

The apparent errors have generally been reduced, as should be expected, except for
N = 3 (see the comment above). The improvement is particularly significant for the
exponentn that was poorly determined before. With a few exceptions, the general trend
for a given exponent is the increase of the direct summation error Mitihis effect has
a simple explanation: our summation method relies on the large-order behaviour analysis,
and the asymptotic regime sets in later whérincreases [79]. Perhaps clever use of the
knowledge coming from the larg¥ expansion could improve the situation.

Note, finally, that the term added to two of the three RG series has allowed us not only
to decrease apparent errors but also to estimate them more reliably.

For several exponents (such as, e:gN = 1)) errors are now dominated by errors
induced by the determination gf. To further improve the situation it will be necessary to
also add a new term to the R&function.

7.2. (Free)e-expansion and 3D series

Comparison with the previous LG—ZJestimates shows no striking effect, small deviations
are due to the use of corrected series.

For the exponent the consistency between 3D andesults remains very good at all.
The situation has markedly improved for the exponentv = 0: there is still a systematic
discrepancy in the central values for the exponents (abd@2), but the difference is
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reduced by more than a factor of 2, which is quite encouraging. A similar comment applies
to the central values of the exponentv =0, ..., 3, where the discrepancy is also reduced
by a factor of 2. In view of theV = 4 prediction, the agreement with the corresponding
d = 3 results is quite satisfactory but apparent errors are large.

One point should, however, be stressed: since the series are shorter it is more difficult
to assess apparent errors and the errors we quote are thus less reliable thanifer 3he
series.

7.3. Free and boundary conditiartexpansion

For thee-expansion we report a second set of values, obtained by imposing thedexazt

values, referred to as bc (i.e. with boundary conditions) in table 2 to distinguish them from
the unconstrainted values denoted by free. Some remarks are in order about the bc approach.
First we do not know the analytic structure of exponents rakar 2. The only piece of
evidence comes from using theexpansion fol = 2. ForN = 0 the agreement with exact
results is quite good [8], suggesting that 2 is a regular point. FON = 1 the agreement

is less striking, leaving room for some complex behaviour. For vaNies 2 there are
indications (IR-renormalons of thé = 2 nonlinearo-model) thatd = 2 corresponds to an
essential singularity (probably non-Borel summable). It is then easy to construct examples
where fitting leads to worse results.

Second, in the cas® > 2 the new series have a more complicated structure which
makes summation (which is a form of extrapolating series to higher orders) and even more
error estimations difficult.

Although the two analyses give compatible results, it happens that bc has the general
tendency to give values aof,v for N > 2 larger than free ones and values ipffor
N > 2 smaller than free ones. This point is understood by remembering thiatat the
correspondingy, v, 1/n are infinite and thus it is reasonable that imposing this behaviour
atd = 2 tends to increase the value of the exponent at 3.

NU N=2
¢ He |l
* He go
0. 676 ® 43 gz
0.674 s d3 1z
0.672 : ep gz
0.67 * 1 + } +
¢
0. 668 ep Iz
0. 666 * ep pv
0. 664 " e
A nt b
ht bc

Figure 2. Comparison between various estimates of the expone¥t= 2: He li from [14, 77],
He go from [78], d3 gz from the present work £ 3), d3 Iz from LG-ZJ § = 3), ep gz from
the present worke(, ep Iz from LG-ZJ £), ep pv from [70] €), mc j from [61], mc b from
[62] and ht bc from [49].
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Finally, it is also remarkable that fdy = O the bc errors are smaller than the free ones.

7.4. Other methods

The general agreement between the high-temperature series, the Monte Carlo results, and
the newd = 3 determinations is in general improved. This in particular applies to the self
avoiding walks where recent long simulations provide very accurate estimates.

7.5. Experiments

The improved agreement of these results with the recent measures on superfluid helium
systems N = 2, is remarkable and is displayed graphically in figure 2. Despite our efforts,
the best experimental value is still much more accurate than the theoretical estimate. In all
other cases the agreement with experiments is good, as seen from table 17.
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Appendix. Seriesd =3

We report here the seven-loop series for thev@symmetric(¢?)? theory, N =0, 1, 2, 3,
computed by Murray and Nickel [46]. The function§g), n2(g) below are defined by

.. dlogZ .. dlogZ;
nEg) =m n2(8) =m
dm dm

where the renormalization constant are definedggy= +Z¢, and (¢?), = Z2(¢o)?
(subscript 0; indicate respectively bare and renormalized fields). The critical exponents
n, v can be found by the identificatiom = 5(g*) andv = (2 + n2(8*) — n(g*))~L. The
symmetry numbeW is reported in square brackets below.

2

n[0] = f_os + 0.000 771 375@° + 0.001 589 8706* — 0.000 660 6148°
+0.0014103423° — 0.001901 863’

1] = % + 0.000 914 2223% + 0.001 796 2229* — 0.000 653 6989°
+0.001 387 810%° — 0.001 697 694’

n[2] = 2%25 + 0.000 987 360@° + 0.001 836 810%* — 0.000 586 3263°
+0.001 251 393@°® — 0.001 395 12¢7

n[3] = ggg:? + 0.001 020 000@° + 0.001 791 925%* — 0.000 504 097%°

+0.001 088 323%° — 0.001 111 498

s 32
12[0] = Tg + i)_a — 0.0357672729°% + 0.034 374 8465* — 0.040 895 8348°



Critical exponents of theV-vector model 8119

+0.059 705 0472° — 0.099 284 837

n2[1] = %‘é + 22;‘;72 — 0.044310253%° 4 0.0395195688* — 0.044 400 3474°
+0.060 363 4414° — 0.093 249 4g’

n2[2] = _ng + 22%2 — 0.0495134446° + 0.040 788 1055* — 0.043 761 9509°
+0.055557 5708° — 0.080413 3G’

n2[3] = _1—55 + 110—512 — 0.0525519564° + 0.039 964 0005* — 0.041 321 991%°

+0.049 092 9344° — 0.067 086 3@".
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